
Academic Editor: Dionisis Kandris

Received: 17 February 2025

Revised: 1 April 2025

Accepted: 28 April 2025

Published: 30 April 2025

Citation: Baek, U.-J.; Jang, Y.-S.; Kim,

J.-S.; Choi, Y.-S.; Kim, M.-S. Deep

Ensemble Learning for Application

Traffic Classification Using Differential

Model Selection Technique. Sensors

2025, 25, 2853. https://doi.org/

10.3390/s25092853

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Deep Ensemble Learning for Application Traffic Classification
Using Differential Model Selection Technique
Ui-Jun Baek 1 , Yoon-Seong Jang 1, Ju-Sung Kim 1 , Yang-Seo Choi 2 and Myung-Sup Kim 1,*

1 Department of Computer and Information Science, Korea University, Sejong 30019, Republic of Korea;
pb1069@korea.ac.kr (U.-J.B.); brave1094@korea.ac.kr (Y.-S.J.); jsung0514@korea.ac.kr (J.-S.K.)

2 Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea; yschoi92@etri.re.kr
* Correspondence: tmskim@korea.ac.kr

Abstract: As the Internet evolves, application traffic is becoming increasingly diverse and
complex, leading network administrators to demand more accurate application traffic
classification. Various deep learning-based application traffic classification methods have
clearly achieved significant success, demonstrating superior classification performance
compared to traditional heuristic classification approaches. However, achieving accuracy
while maintaining time-efficiency and high generalization performance remains a challenge.
We propose an end-to-end learning method that incorporates a model-selection-based
ensemble mechanism to improve the performance–inference time trade-off of application
traffic classifiers. Evaluated on two public datasets and one private dataset, our proposed
method improves classification accuracy across all datasets while ensuring reasonable
inference times compared to nine classification methods.

Keywords: deep ensemble; model selection technique; application traffic classification;
end-to-end ensemble learning; network management

1. Introduction
Recent advancements in IT technologies, including cloud computing and AI appli-

cations, have led to the development of diverse applications and services, resulting in
increasingly complex application traffic and a continuous rise in traffic volume. According
to MindInventory, the enterprise software market is expected to exceed USD 401.6 billion
by 2029, with a Compound Annual Growth Rate (CAGR) of 6.35%, while the global cloud
computing market is projected to surpass USD 1266.4 billion by 2028, growing at a CAGR
of 15.1% [1]. This trend is likely to accelerate further, considering the deep integration of AI
applications and machine learning technologies in software development, as well as the
growth of low-code and no-code platforms [2]. The acceleration in application and service
development leads to an increase in network traffic volume. Gitnux predicts that global
Internet traffic will grow at a CAGR of 24% from 2021 to 2026 [3], while Cloudflare states
that global Internet traffic increased by 25% in 2023 [4]. Given the increase in diverse and
complex applications and services, along with the growth in their traffic volume, research
on accurate and fast application traffic classification has become essential.

Application traffic classification is the process of categorizing network traffic into
various applications or services. It is one of the most crucial tasks in network manage-
ment. Network administrators can utilize application classification results to perform the
following tasks:

• Traffic monitoring and optimization: Network resources can be efficiently allocated
by analyzing the traffic volume of specific applications.

Sensors 2025, 25, 2853 https://doi.org/10.3390/s25092853

https://doi.org/10.3390/s25092853
https://doi.org/10.3390/s25092853
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4358-7839
https://orcid.org/0009-0002-4468-0717
https://orcid.org/0000-0002-3809-2057
https://doi.org/10.3390/s25092853
https://www.mdpi.com/article/10.3390/s25092853?type=check_update&version=1

Sensors 2025, 25, 2853 2 of 17

• Security enhancement: Abnormal traffic or attack traffic can be detected to prevent or
respond to network attacks.

• Bandwidth management: Bandwidth can be limited or prioritized for applications
that use high bandwidth.

• Network performance analysis: The impact of specific applications on network
performance can be analyzed and improved.

• Regulation and audit: Traffic records can be analyzed to meet legal or regulatory
requirements.

Application traffic classification research has evolved from traditional methods such as
port-based classification, deep packet inspection, and behavior-based analysis to techniques
utilizing machine learning and deep learning. In particular, there have been numerous stud-
ies on application traffic classification using deep learning technologies such as CNNs [5,6],
RNNs [7], and attention mechanisms [8]. Recently, with the advancement of LLMs, research
on pre-training to capture prior knowledge of network traffic modality and fine-tuning to
transfer learned knowledge to target domains [9–11] has been actively conducted, aiming
for the following requirements and challenges [12]:

• Effectiveness: It should provide traffic visibility and accurately classify network traffic.
• Deployability: Traffic classification models should be deployable within network

assets and constraints.
• Trustworthiness: The results of traffic classification should be reliable.
• Robustness: The model should continue to function properly despite changes in the

network environment.
• Adaptivity: When adjusting classification tasks according to environmental changes,

the classification model should be able to adapt to these changes.

While the advancement of deep learning technology has clearly achieved many suc-
cesses in addressing the limitations of various traditional methods, including machine
learning approaches, there are still limitations that need to be resolved. Overfitting and
slow inference speeds are presented as representative limitations of deep learning-based
approaches. The overfitting problem is a phenomenon where deep learning models are
excessively optimized for training data, resulting in reduced generalization ability for new
data. Overfitting can occur when the model is overly complex, or when noise features are
included. In particular, unique identifiers unrelated to applications contained in network
traffic packets (for example, the IP address field in the IP layer, the Server Name Indication
field in the TLS layer, etc.) are highly likely to cause overfitting problems. Representa-
tive methods to solve the overfitting problem include early stopping, network reduction,
expansion of the training data, regularization [13], and ensemble techniques.

We chose the ensemble technique to address the overfitting problem and improve
generalization performance. Ensemble techniques can effectively mitigate overfitting issues
by combining multiple features or models to achieve higher performance, stability, and
generalization ability than a single model. The general process of ensemble techniques
is divided into two main stages, as shown in Figure 1. The first stage is the intermediate
output generation process, where pre-trained intermediate classifiers process the inputs
and generate intermediate outputs or temporary classification results. The second stage is
aggregation and classification, where the output decision-maker (e.g., hard vote, soft vote)
aggregates the intermediate outputs and generates the final output.

While there have been various studies attempting to improve generalization perfor-
mance by utilizing ensemble techniques in multiple deep learning models, these also have
limitations, one of which is slow inference time. In such ensemble approaches, all inter-
mediate outputs must be generated before they can be aggregated and the final output
produced, inevitably resulting in slow inference times. Even if the problem of slow infer-

Sensors 2025, 25, 2853 3 of 17

ence time is solved by performing intermediate classifications in parallel, there is still the
limitation of having to perform many computations. Another limitation is the diversity of
learning, which refers to the differences between intermediate classifiers, and models are
considered to be diverse when the errors for unseen instances differ between classifiers.
Also, the success of ensemble learning heavily depends on the accuracy and diversity of the
intermediate classifiers [14]. In other words, if the accuracy profiles of pre-trained models
are similar, there may be data instances that can never be classified through existing output
decision methods, as explained in Figure 2. When using an ensemble with two different
models, in the ideal case (left), the errors of Model 1 and Model 2 can complement each
other, resulting in high classification accuracy. However, in the bad case (right), the errors
of Model 1 and Model 2 are not complementary.

Sensors 2025, 25, x FOR PEER REVIEW 3 of 18

Figure 1. General process of ensemble techniques.

While there have been various studies attempting to improve generalization per-

formance by utilizing ensemble techniques in multiple deep learning models, these also

have limitations, one of which is slow inference time. In such ensemble approaches, all

intermediate outputs must be generated before they can be aggregated and the final

output produced, inevitably resulting in slow inference times. Even if the problem of

slow inference time is solved by performing intermediate classifications in parallel, there

is still the limitation of having to perform many computations. Another limitation is the

diversity of learning, which refers to the differences between intermediate classifiers, and

models are considered to be diverse when the errors for unseen instances differ between

classifiers. Also, the success of ensemble learning heavily depends on the accuracy and

diversity of the intermediate classifiers [14]. In other words, if the accuracy profiles of

pre-trained models are similar, there may be data instances that can never be classified

through existing output decision methods, as explained in Figure 2. When using an en-

semble with two different models, in the ideal case (left), the errors of Model 1 and Model

2 can complement each other, resulting in high classification accuracy. However, in the

bad case (right), the errors of Model 1 and Model 2 are not complementary.

Figure 2. Ideal case and bad case of ensemble learning.

We propose an end-to-end ensemble learning method based on a differentiable

model selection strategy. The proposed method selects the intermediate classifier to

generate the intermediate output based on the output logits of the model selector, and

then sets that output as the final classification result. This model selection technique is

similar to winner-takes-all [15] and has the advantage of being able to infer within a

reasonable time, as it does not need to perform all intermediate classifications. Addi-

tionally, we adopt an end-to-end approach that learns the model selector and intermedi-

ate classifiers simultaneously rather than separately, and through two novel additional

loss functions that control the model selection process, we induce competition among the

intermediate classifiers and improve the learning diversity.

Figure 1. General process of ensemble techniques.

Sensors 2025, 25, x FOR PEER REVIEW 3 of 18

Figure 1. General process of ensemble techniques.

While there have been various studies attempting to improve generalization per-

formance by utilizing ensemble techniques in multiple deep learning models, these also

have limitations, one of which is slow inference time. In such ensemble approaches, all

intermediate outputs must be generated before they can be aggregated and the final

output produced, inevitably resulting in slow inference times. Even if the problem of

slow inference time is solved by performing intermediate classifications in parallel, there

is still the limitation of having to perform many computations. Another limitation is the

diversity of learning, which refers to the differences between intermediate classifiers, and

models are considered to be diverse when the errors for unseen instances differ between

classifiers. Also, the success of ensemble learning heavily depends on the accuracy and

diversity of the intermediate classifiers [14]. In other words, if the accuracy profiles of

pre-trained models are similar, there may be data instances that can never be classified

through existing output decision methods, as explained in Figure 2. When using an en-

semble with two different models, in the ideal case (left), the errors of Model 1 and Model

2 can complement each other, resulting in high classification accuracy. However, in the

bad case (right), the errors of Model 1 and Model 2 are not complementary.

Figure 2. Ideal case and bad case of ensemble learning.

We propose an end-to-end ensemble learning method based on a differentiable

model selection strategy. The proposed method selects the intermediate classifier to

generate the intermediate output based on the output logits of the model selector, and

then sets that output as the final classification result. This model selection technique is

similar to winner-takes-all [15] and has the advantage of being able to infer within a

reasonable time, as it does not need to perform all intermediate classifications. Addi-

tionally, we adopt an end-to-end approach that learns the model selector and intermedi-

ate classifiers simultaneously rather than separately, and through two novel additional

loss functions that control the model selection process, we induce competition among the

intermediate classifiers and improve the learning diversity.

Figure 2. Ideal case and bad case of ensemble learning.

We propose an end-to-end ensemble learning method based on a differentiable model
selection strategy. The proposed method selects the intermediate classifier to generate
the intermediate output based on the output logits of the model selector, and then sets
that output as the final classification result. This model selection technique is similar to
winner-takes-all [15] and has the advantage of being able to infer within a reasonable
time, as it does not need to perform all intermediate classifications. Additionally, we
adopt an end-to-end approach that learns the model selector and intermediate classifiers
simultaneously rather than separately, and through two novel additional loss functions
that control the model selection process, we induce competition among the intermediate
classifiers and improve the learning diversity.

Following the introduction, Section 2 of this paper explains research on deep learning
model ensembles and model selection techniques. Section 3 describes the proposed deep
ensemble method, model structure, and loss functions. Section 4 demonstrates the effective-
ness of the proposed method through datasets and various experimental results. Section 5
provides insights into the operating principle through a comparison with bagging, one of

Sensors 2025, 25, 2853 4 of 17

the existing ensemble techniques. Finally, Section 6 summarizes the conclusion, presents
limitations, and suggests future research.

2. Related Works
2.1. Deep Learning-Based Application Traffic Classification

The history of deep learning-based application traffic classification is closely tied to
the development of artificial intelligence and network traffic analysis. Early application
traffic classification could easily categorize applications using well-known port numbers on
the Internet, but the emergence of applications using dynamic ports revealed issues with
inaccuracy and reliability. Subsequently, deep packet inspection (DPI), which examines
packet contents, emerged but showed limitations due to traffic encryption and protocol
encapsulation. To address these limitations, classification methods using statistical charac-
teristics of traffic (packet size, inter-arrival time, etc.) were developed without considering
the payload content. From the late 2000s, machine learning algorithms were introduced
to traffic classification [16]. In machine learning-based classification methodologies, many
studies have used supervised learning methods such as Support Vector Machine (SVM),
K-Nearest Neighbors (KNN), and decision trees to learn and classify network traffic char-
acteristics. These techniques primarily relied on feature engineering, so how the features
were selected significantly impacted their performance. In the 2010s, the growth of deep
learning technology brought significant changes to traffic classification. Deep learning
provided the ability to automatically learn complex patterns from large-scale data, reducing
dependence on feature engineering, and achieving success in various fields, including
application traffic classification. Recently, research has been conducted to improve classifi-
cation accuracy using large-scale pre-trained models [9,11,17] with strong generalization
performance. While studies on model lightweighting are being conducted, considering the
excessive size of these models, there is still a lack of research that improves the trade-off
between performance and inference time itself. As we approach the commercialization of
6G networks beyond 5G, research is needed to accurately and quickly classify the complex
and vast traffic of future Internet environments [18,19].

2.2. Application Traffic Classification Using Ensemble Techniques

This section introduces some studies that combine machine learning or deep learning
models through ensemble techniques. Possebon et al. proposed a method to combine
SVM, KNN, decision tree (DT), and Multi-Layer Perceptron (MLP) using voting, stacking,
bagging, and boosting techniques [20]. Amin et al. proposed a method to independently
train multiple CNN models and then combine the outputs of each model [21]. Ons et al. pro-
posed a two-stage ensemble learning approach, using basic classifiers such as DT, Random
Forest (RF), Adaboost, and XGBoost in the first stage, and then a DL-based meta-classifier in
the second stage to combine the outputs of these basic classifiers for final classification [22].
Like these studies, the majority of research utilizing ensemble techniques in the field of
application traffic classification still adheres to traditional aggregation strategies or deep
learning-based output combination, mainly using machine learning models or simple
deep learning models as intermediate classifiers. The reason these studies have to use
lightweight classifiers is due to constraints on inference time or computational load, which
arise because traditional ensembles require all intermediate classifiers to perform inference
for aggregation and classification. In other words, in the existing ensemble structure where
all intermediate classifications must be performed, there must be limitations in applying
deep learning-based classifiers. Therefore, to fully combine deep learning technology
and ensemble methods without constraints, research on efficient ensemble techniques
is necessary.

Sensors 2025, 25, 2853 5 of 17

2.3. Straight-Through Gumbel-Softmax

Integrating model selection into the deep learning process has traditionally been
challenging due to the non-differentiability of categorical discrete variables. However, the
emergence of the Gumbel-softmax [23] technique has made it possible to sample discrete
variables within deep learning models. Gumbel-softmax is an extension of the Gumbel-
max trick [24] through softmax, approximating the sampling of categorical variables in a
continuous probabilistic manner, making it differentiable. The formula for Gumbel-softmax
is as follows:

yk =
exp((logπk + gk)/τ)

∑K
j=1 exp(logπj + gj/τ)

(1)

where πk represents the categorical distribution for the kth data instance, K is the number
of classes, and τ is the temperature parameter. As τ decreases, the Gumbel-softmax
distribution approaches a one-hot vector, and as τ increases, the distribution becomes
more uniform and continuous; gi is the Gumbel noise sampled from a uniform distribution
according to the following equation:

gk = −log(−log(µk)) (2)

This study uses the straight-through Gumbel-softmax, which maintains differentia-
bility while generating discrete samples. Straight-through Gumbel-softmax generates
discrete samples using argmax in the forward pass and propagates the loss according
to the Gumbel-softmax gradient in the backward pass, which can be expressed by the
following equations:

∂L
∂θi

=
K

∑
k=1

∂L
∂yk

∂yk
∂θi

(3)

where L is the loss function and θi is the ith logit parameter.

2.4. Model Selection Mechanism

The model selection mechanism is a method for selecting one of the logits output by
each model when there are multiple candidate models, and then choosing it as the final
result of the ensemble.

This process is illustrated in Figure 3a. In the model selection mechanism, each
candidate model can have diverse accuracy profiles, and they may complement each other
across the test sample distribution. This approach was initially proposed to optimize
channel selection [25] and feature selection processes [26], and it is being utilized in areas
such as neural architecture search [27]. In particular, differentiable model selection has
the potential to create superior models and efficient ensembles by automating the optimal
model selection for classifying specific input samples.

Recently, Kotary et al. proposed E2E-CEL (end-to-end combinatorial ensemble learn-
ing) [28], which ensembles pre-trained classifier outputs using a differentiable model
selection technique, as illustrated in Figure 3a. This approach consists of three main stages:

• Intermediate output generation: Intermediate classifiers (ensemble agent models)
receive data samples and generate intermediate outputs (agent predictions).

• Model selection: The model selector (selection net) receives data samples and gener-
ates a one-hot vector determining which model’s intermediate output to use.

• Aggregation and classification: The final output is generated by multiplying the
intermediate classifier’s intermediate output by the model selector’s one-hot vector.

E2E-CEL performs classification tasks by combining pre-trained models and achieves
improved classification performance. However, it does not process data from input to

Sensors 2025, 25, 2853 6 of 17

classification output within a single model, meaning that it cannot be considered to be fully
end-to-end from an ensemble learning perspective. Additionally, since E2E-CEL indepen-
dently trains intermediate classifiers, there is no collaborative or competitive mechanism
during the training process. Consequently, if intermediate classifiers are structurally similar
or rely on similar features, they inevitably produce correlated outputs. This limits error
diversity, prevents the outputs from complementing one another, and may lead to the bad
case shown in Figure 2.

The proposed method represents a fully integrated ensemble approach that combines
both stages of traditional ensemble learning: intermediate classifier training (Stage 1) and
aggregation (Stage 2), as shown in Figure 3b. In this end-to-end ensemble learning, the
weights of intermediate classifiers can be dynamically adjusted based on model selection
outputs. Additionally, two novel loss functions—selection balance loss and selection freeze
loss—regulate competition or collaboration between models. These mechanisms enhance
error diversity in the ensemble model and optimize the classification outcomes.

Sensors 2025, 25, x FOR PEER REVIEW 6 of 18

• Intermediate output generation: Intermediate classifiers (ensemble agent models)

receive data samples and generate intermediate outputs (agent predictions).

• Model selection: The model selector (selection net) receives data samples and gen-

erates a one-hot vector determining which model’s intermediate output to use.

• Aggregation and classification: The final output is generated by multiplying the

intermediate classifier’s intermediate output by the model selector’s one-hot vector.

E2E-CEL performs classification tasks by combining pre-trained models and

achieves improved classification performance. However, it does not process data from

input to classification output within a single model, meaning that it cannot be considered

to be fully end-to-end from an ensemble learning perspective. Additionally, since

E2E-CEL independently trains intermediate classifiers, there is no collaborative or com-

petitive mechanism during the training process. Consequently, if intermediate classifiers

are structurally similar or rely on similar features, they inevitably produce correlated

outputs. This limits error diversity, prevents the outputs from complementing one an-

other, and may lead to the bad case shown in Figure 2.

The proposed method represents a fully integrated ensemble approach that com-

bines both stages of traditional ensemble learning: intermediate classifier training (Stage

1) and aggregation (Stage 2), as shown in Figure 3b. In this end-to-end ensemble learning,

the weights of intermediate classifiers can be dynamically adjusted based on model se-

lection outputs. Additionally, two novel loss functions—selection balance loss and selec-

tion freeze loss—regulate competition or collaboration between models. These mecha-

nisms enhance error diversity in the ensemble model and optimize the classification

outcomes.

(a) (b)

Figure 3. Ensemble deep learning model based on model selection technique: (a) Overview of ex-

isting ensemble based on model selection technique (Kotary, et al.). (b) Overview of end-to-end

ensemble based on model selection technique (proposed).

3. Deep Ensemble Using the Model Selection Technique

3.1. Overview of the Deep Ensemble Process

This section provides an overview of the deep ensemble model structure and a

summary of each learning stage. The deep ensemble model consists of four stages, as

shown in Figure 4, and receives traffic session data as inputs, which it processes through

each stage, and then outputs the probability values of belonging to each class as the final

classification result.

The first stage is data preprocessing, which transforms the input to suit each inter-

mediate classifier. In this study, some publicly available models from existing research

were used as intermediate classifiers, and the input was transformed according to the

input requirements of each classifier. In the proposed method, there are no duplicate

Figure 3. Ensemble deep learning model based on model selection technique: (a) Overview of existing
ensemble based on model selection technique (Kotary, et al.). (b) Overview of end-to-end ensemble
based on model selection technique (proposed).

3. Deep Ensemble Using the Model Selection Technique
3.1. Overview of the Deep Ensemble Process

This section provides an overview of the deep ensemble model structure and a sum-
mary of each learning stage. The deep ensemble model consists of four stages, as shown
in Figure 4, and receives traffic session data as inputs, which it processes through each
stage, and then outputs the probability values of belonging to each class as the final
classification result.

The first stage is data preprocessing, which transforms the input to suit each inter-
mediate classifier. In this study, some publicly available models from existing research
were used as intermediate classifiers, and the input was transformed according to the input
requirements of each classifier. In the proposed method, there are no duplicate models
within the ensemble, forming a heterogeneous combination where diverse input forms
and model structures can improve the classification performance by increasing the error
diversity [22]. The second stage is the model selection process, where the model selector
receives the preprocessed session, extracts features, and outputs the model selection result,
which is the probability that each intermediate classifier’s output will be selected as the
final output. The model selection result is a one-hot vector of size equal to the number of
intermediate classifiers. The third stage is the intermediate classification process, where
each intermediate classifier receives the preprocessed session, extracts features, and gener-
ates an intermediate output. The final stage is the aggregation and classification process,
which multiplies the model selection result by the intermediate outputs and then sums

Sensors 2025, 25, 2853 7 of 17

them to generate the final output, which is a vector of probabilities that the session belongs
to each class.

Sensors 2025, 25, x FOR PEER REVIEW 7 of 18

models within the ensemble, forming a heterogeneous combination where diverse input

forms and model structures can improve the classification performance by increasing the

error diversity [22]. The second stage is the model selection process, where the model

selector receives the preprocessed session, extracts features, and outputs the model se-

lection result, which is the probability that each intermediate classifier’s output will be

selected as the final output. The model selection result is a one-hot vector of size equal to

the number of intermediate classifiers. The third stage is the intermediate classification

process, where each intermediate classifier receives the preprocessed session, extracts

features, and generates an intermediate output. The final stage is the aggregation and

classification process, which multiplies the model selection result by the intermediate

outputs and then sums them to generate the final output, which is a vector of probabili-

ties that the session belongs to each class.

Figure 4. The four stages of the deep ensemble model.

3.2. Baselines for Intermediate Classifiers

We selected five publicly available models for configuration and evaluation of the

proposed deep ensemble method. The first model was the 2D-CNN [5], which was the

first attempt to apply a representation learning approach to malicious traffic classification

using raw traffic data. It proposed three models and showed superior performance

compared to existing methodologies. The second model was the 1D-CNN [6], which was

the first attempt to apply an end-to-end classification method in the field of encrypted

traffic classification. It validated the method’s effectiveness using the public dataset and

showed superior performance in 11 out of 12 evaluation metrics compared to existing

methodologies. The third and fourth models were the HAST-IDS [7], which is divided

into two sub-models. Both sub-models use a CNN to learn low-level spatial features of

network traffic and LSTM networks to learn high-level temporal features. The difference

between the first sub-model HAST-1 and the second sub-model HAST-2 is the presence

or absence of the LSTM network. The HAST-IDS model was evaluated using two public

datasets and showed excellent performance compared to existing methods. The fifth

model was the SAM model [8], which uses a self-attention mechanism to classify appli-

cation traffic. SAM demonstrated high classification performance while ensuring re-

al-time operation by using smaller inputs compared to existing models, and it also pro-

vided interpretability.

Figure 4. The four stages of the deep ensemble model.

3.2. Baselines for Intermediate Classifiers

We selected five publicly available models for configuration and evaluation of the
proposed deep ensemble method. The first model was the 2D-CNN [5], which was the first
attempt to apply a representation learning approach to malicious traffic classification using
raw traffic data. It proposed three models and showed superior performance compared to
existing methodologies. The second model was the 1D-CNN [6], which was the first attempt
to apply an end-to-end classification method in the field of encrypted traffic classification.
It validated the method’s effectiveness using the public dataset and showed superior
performance in 11 out of 12 evaluation metrics compared to existing methodologies. The
third and fourth models were the HAST-IDS [7], which is divided into two sub-models.
Both sub-models use a CNN to learn low-level spatial features of network traffic and LSTM
networks to learn high-level temporal features. The difference between the first sub-model
HAST-1 and the second sub-model HAST-2 is the presence or absence of the LSTM network.
The HAST-IDS model was evaluated using two public datasets and showed excellent
performance compared to existing methods. The fifth model was the SAM model [8],
which uses a self-attention mechanism to classify application traffic. SAM demonstrated
high classification performance while ensuring real-time operation by using smaller inputs
compared to existing models, and it also provided interpretability.

In the proposed method, a corresponding intermediate classifier must be selected
each time a data instance is classified, which can be a significant overhead in terms of
inference time. To minimize this overhead, we adopted SAM as the basic structure of the
model selector, which has fast inference time while maintaining excellent classification
performance. The model selector is structured by adding the straight-through Gumbel-
softmax after the SAM baseline. It receives the output of the fully connected layer located
after SAM as an input, and it outputs a one-hot vector for model selection with a size equal
to the number of intermediate classifiers.

Sensors 2025, 25, 2853 8 of 17

3.3. Loss Functions for Improving Error Diversity and Learning Stability

This section proposes two additional loss functions besides cross-entropy for end-to-
end learning to improve error diversity: selection balance loss, and selection freezing loss.
The final loss is a weighted sum of these three losses, expressed by the following equation:

Ltotal = LCE·WCE + LSB·WSB + LSF·WSF (4)

The first loss function is cross-entropy loss, which calculates the difference between the
predicted class probabilities and actual class probabilities, aiming to improve the accuracy
of the final output. The equation is as follows:

LCrossEntropy = −∑N
i=1 ∑K

j=1 yij·log(pij) (5)

where N is the number of samples, K is the number of classes, yij indicates whether the
ith sample belongs to the jth class, and pij is the predicted probability that the ith sample
belongs to the jth class. The cross-entropy loss is backpropagated to both the model selector
and the intermediate classifiers.

The first additional loss function is the selection balance function, proposed to address
the selection monopoly problem. The loss value transmitted to each intermediate classifier
varies according to the model selector’s output, due to the application of the straight-
through technique. In other words, the selected model receives a higher proportion of
loss compared to unselected models, resulting in a higher learning rate. This characteristic
causes a selection monopoly problem and hinders the normal ensemble of the model. The
selection balance function aims to control the selection frequency of each model by the
model selector, solving the selection monopoly problem and improving the error diversity.
The data monopoly problem occurs when deep learning models with initially high learning
rates monopolize data instance allocations, as they learn in the direction of minimizing loss
according to weight changes during the training process. When training a single model,
the data allocation results vary depending on each model’s learning speed. According to
our experiments, the comparison of learning speeds between models is as follows:

2D − CNN ≈ 1D − CNN ≈ SAM ≫ HAST − 1 > HAST − 2 (6)

The 2D-CNN, 1D-CNN, and SAM have faster learning speeds compared to HAST.
When training using only cross-entropy, without additional loss functions, CNN models
and SAM, with their faster learning speeds, are allocated all of the data, as shown in
Figure 5. Each plot in Figure 5 represents the history of changes in model selection ratios for
each dataset, with the x-axis showing the training epochs and the y-axis showing the sum
of selection counts for each model. At the beginning of training, CNN models, HAST-1, and
SAM are observed to be allocated data and trained, but HAST-1, with its slower learning
speed, is gradually not allocated data, and towards the end of training, the CNN models
and SAM are observed to be allocated all of the data. This occurs similarly in other datasets.

The selection balance loss is the standard deviation of the sum of selection counts for
each model, expressed by the following equation:

LSB =
√

1
M ∑M

j=1 (cj − µ)2

c = ∑n
i=1 yi, µ = 1

M ∑M
j=1 cj

(7)

where y = {y1, y2, . . . , yn} is the set of one-hot vectors for model selection across n data
instances, M is the number of models, yi = RM is an M-dimensional one-hot vector for
the ith data instance, cj is the sum of selection counts for the jth model, µ is the average

Sensors 2025, 25, 2853 9 of 17

of selection counts for each model, and the LSB is the standard deviation of the sum of
selection counts for each model. The core idea of the selection balance loss is to enable
diverse learning by guaranteeing a minimum learning opportunity for each intermediate
classifier, and the experimental results confirmed that it functions as intended in its design.

Sensors 2025, 25, x FOR PEER REVIEW 9 of 18

the CNN models and SAM are observed to be allocated all of the data. This occurs simi-

larly in other datasets.

Figure 5. The monopoly problem and the unstable learning problem.

The selection balance loss is the standard deviation of the sum of selection counts for

each model, expressed by the following equation:

ℒ𝑆𝐵 = √
1

𝑀
∑ (𝑐𝑗 − 𝜇)2

𝑀

𝑗=1

𝑐 = ⁡∑ 𝑦𝑖
𝑛

𝑖=1
, 𝜇 =

1

𝑀
∑ 𝑐𝑗

𝑀

𝑗=1

(7)

where 𝑦 = {𝑦1, 𝑦2, … , 𝑦𝑛} is the set of one-hot vectors for model selection across 𝑛 data

instances, 𝑀 is the number of models, 𝑦𝑖 = ℝ𝑀 is an 𝑀-dimensional one-hot vector for

the 𝑖𝑡ℎ data instance, 𝑐𝑗 is the sum of selection counts for the 𝑗𝑡ℎ model, 𝜇 is the aver-

age of selection counts for each model, and the ℒ𝑆𝐵 is the standard deviation of the sum

of selection counts for each model. The core idea of the selection balance loss is to enable

diverse learning by guaranteeing a minimum learning opportunity for each intermediate

classifier, and the experimental results confirmed that it functions as intended in its de-

sign.

The second additional loss function is the selection freezing function, proposed to

address the learning instability problem. The learning instability problem occurs when

the model selection results change drastically due to changes in the weights of the model

selector during the learning process. An example of the learning instability problem is

shown in Figure 5. The model selector is a function that finds the optimal solution for the

data allocation problem for each classifier, and it is recommended to vary the data allo-

cation information diversely in the early stages of learning. However, if the allocation

information changes significantly when each intermediate classifier is optimized for the

allocated data, it can cause great confusion to the distribution that the classifier has al-

ready learned in the latter part of the training. The selection freezing loss is calculated as

the inverse of the deviation of the sum of model selection history per data instance, and

the calculation formula is as follows:

ℒ𝑆𝐹 =⁡ (
1

𝑁
∑ 𝜎𝑖

𝑁

𝑖=1
)−1

𝑆𝑖,𝑗 = ∑ 𝑆𝑖,𝑗,𝑒
𝐸
𝑒=1 ⁡ ⁡𝜎𝑖 = √

1

𝑀
∑ (𝑆𝑖,𝑗 − 𝜇𝑖,𝑗)

2⁡𝑀
𝑗=1

(8)

where 𝑀 is the number of models, 𝑁 is the number of data instances, 𝐸 is the number

of epochs accumulated in the memory, 𝑆𝑖,𝑗,𝑒 ∈ ℝ𝑀 is the one-hot vector of model selec-

tion for the 𝑖𝑡ℎ⁡data instance in the 𝑒𝑡ℎ⁡epoch, 𝑆𝑖,𝑗 is the number of times the 𝑖𝑡ℎ⁡data

instance was selected in the 𝑗𝑡ℎ⁡model, 𝜎𝑖 is the standard deviation of the number of

model selections for the 𝑖𝑡ℎ⁡data instance, and ℒ𝑆𝐹⁡is the inverse of the average of the

standard deviations of selection history for each data instance. The core idea of the selec-

Figure 5. The monopoly problem and the unstable learning problem.

The second additional loss function is the selection freezing function, proposed to
address the learning instability problem. The learning instability problem occurs when
the model selection results change drastically due to changes in the weights of the model
selector during the learning process. An example of the learning instability problem is
shown in Figure 5. The model selector is a function that finds the optimal solution for
the data allocation problem for each classifier, and it is recommended to vary the data
allocation information diversely in the early stages of learning. However, if the allocation
information changes significantly when each intermediate classifier is optimized for the
allocated data, it can cause great confusion to the distribution that the classifier has already
learned in the latter part of the training. The selection freezing loss is calculated as the
inverse of the deviation of the sum of model selection history per data instance, and the
calculation formula is as follows:

LSF = (1
N ∑N

i=1 σi)
−1

Si,j = ∑E
e=1 Si,j,e σi =

√
1
M ∑M

j=1 (Si,j − µi,j)
2 (8)

where M is the number of models, N is the number of data instances, E is the number of
epochs accumulated in the memory, Si,j,e ∈ RM is the one-hot vector of model selection for
the ith data instance in the eth epoch, Si,j is the number of times the ith data instance was
selected in the jth model, σi is the standard deviation of the number of model selections
for the ith data instance, and LSF is the inverse of the average of the standard deviations
of selection history for each data instance. The core idea of the selection freezing loss is to
give intermediate classifiers sufficient time to fine-tune on the allocated data in the latter
part of the training, and the experimental results confirmed that it functions as intended in
its design.

4. Experiments and Evaluation
4.1. Datasets

This section provides a description of the datasets used to validate the proposed
method. Three datasets were used: one public dataset and two private datasets. An
overview of the datasets is presented in Table 1. Each dataset was split into training and
test datasets at an 8:2 ratio and used for training and testing after undergoing refinement
and preprocessing. Refinement is the process of removing sessions that may interfere with
model training, eliminating sessions that meet the following conditions:

Sensors 2025, 25, 2853 10 of 17

Table 1. Overview of datasets.

Dataset Publicly #Task #Applications
#Sessions

Raw Preprocessed

Private N 2 50 71,841 23,846
ISCX VPN 2016 [29] Y 3 23 187,336 10,011
ISCX Tor 2016 [30] Y 3 21 57,605 36,947

• Incomplete session: Elimination of TCP or TLS sessions without a hand-shake process
• Non-payload session: Elimination of TCP sessions that do not contain a payload
• Unrelated protocol sessions: Elimination of sessions from protocols considered to be

unrelated to applications, such as DNS, LLMNR, MDNS, etc. [31].

Preprocessing is the process of removing IP headers and TCP/UDP headers that may
cause biased learning or overfitting when converting each session into model inputs. The
distribution of the number of sessions for each dataset and application after refinement and
preprocessing is shown in Figures 6–8.

Sensors 2025, 25, x FOR PEER REVIEW 10 of 18

tion freezing loss is to give intermediate classifiers sufficient time to fine-tune on the al-

located data in the latter part of the training, and the experimental results confirmed that

it functions as intended in its design.

4. Experiments and Evaluation

4.1. Datasets

This section provides a description of the datasets used to validate the proposed

method. Three datasets were used: one public dataset and two private datasets. An

overview of the datasets is presented in Table 1. Each dataset was split into training and

test datasets at an 8:2 ratio and used for training and testing after undergoing refinement

and preprocessing. Refinement is the process of removing sessions that may interfere

with model training, eliminating sessions that meet the following conditions:

Table 1. Overview of datasets.

Dataset Publicly #Task #Applications
#Sessions

Raw Preprocessed

Private N 2 50 71,841 23,846

ISCX VPN 2016 [29] Y 3 23 187,336 10,011

ISCX Tor 2016 [30] Y 3 21 57,605 36,947

• Incomplete session: Elimination of TCP or TLS sessions without a hand-shake pro-

cess

• Non-payload session: Elimination of TCP sessions that do not contain a payload

• Unrelated protocol sessions: Elimination of sessions from protocols considered to be

unrelated to applications, such as DNS, LLMNR, MDNS, etc. [31].

Preprocessing is the process of removing IP headers and TCP/UDP headers that may

cause biased learning or overfitting when converting each session into model inputs. The

distribution of the number of sessions for each dataset and application after refinement

and preprocessing is shown in Figures 6–8.

Figure 6. The number of sessions per application (private dataset).

Figure 7. The number of sessions per application (ISCX VPN 2016).

Figure 6. The number of sessions per application (private dataset).

Sensors 2025, 25, x FOR PEER REVIEW 10 of 18

tion freezing loss is to give intermediate classifiers sufficient time to fine-tune on the al-

located data in the latter part of the training, and the experimental results confirmed that

it functions as intended in its design.

4. Experiments and Evaluation

4.1. Datasets

This section provides a description of the datasets used to validate the proposed

method. Three datasets were used: one public dataset and two private datasets. An

overview of the datasets is presented in Table 1. Each dataset was split into training and

test datasets at an 8:2 ratio and used for training and testing after undergoing refinement

and preprocessing. Refinement is the process of removing sessions that may interfere

with model training, eliminating sessions that meet the following conditions:

Table 1. Overview of datasets.

Dataset Publicly #Task #Applications
#Sessions

Raw Preprocessed

Private N 2 50 71,841 23,846

ISCX VPN 2016 [29] Y 3 23 187,336 10,011

ISCX Tor 2016 [30] Y 3 21 57,605 36,947

• Incomplete session: Elimination of TCP or TLS sessions without a hand-shake pro-

cess

• Non-payload session: Elimination of TCP sessions that do not contain a payload

• Unrelated protocol sessions: Elimination of sessions from protocols considered to be

unrelated to applications, such as DNS, LLMNR, MDNS, etc. [31].

Preprocessing is the process of removing IP headers and TCP/UDP headers that may

cause biased learning or overfitting when converting each session into model inputs. The

distribution of the number of sessions for each dataset and application after refinement

and preprocessing is shown in Figures 6–8.

Figure 6. The number of sessions per application (private dataset).

Figure 7. The number of sessions per application (ISCX VPN 2016). Figure 7. The number of sessions per application (ISCX VPN 2016).

Sensors 2025, 25, x FOR PEER REVIEW 11 of 18

Figure 8. The number of sessions per application (ISCX Tor 2016).

4.2. Overall Comparisons with Other Methods

Overall, the proposed methodology leads to improved accuracy while ensuring

reasonable inference speed compared to the other methods. In the private dataset, there

was a 1.8% p improvement in classification accuracy compared to HAST-1, which

showed the highest performance among baselines, and it demonstrated 1.8 times faster

inference speed in terms of inference time. Compared to XGB, which showed the best

performance among the comparison models, the accuracy improved by 0.5% p, but XGB

showed overwhelming performance in terms of inference speed. However, in the ISCX

Tor dataset, XGB showed low performance, while the proposed methodology showed

the best performance. The traditional hard vote ensemble showed low performance ex-

cept for ISCX Tor 2016, and the ensemble of pre-trained models (Kotary, et al.) did not

show superior performance on all datasets. The proposed method showed the highest

performance on all three evaluated datasets and guaranteed a reasonable inference time

compared to other methodologies (Table 2).

Table 2. Overall comparison with other methods.

Model

Private ISCX VPN 2016 ISCX Tor 2016

Accuracy F1-Score
Inference

Time *
Accuracy F1-Score

Inference

Time *
Accuracy F1-Score

Inference

Time *

2D-CNN 61.6 60.8 113 64.9 64.6 47 96.5 96.3 175

1D-CNN 59.5 58.3 113 66.1 65.8 47 96.6 96.3 175

HAST-1 92.5 92.5 1646 73.1 73.1 691 97.0 96.8 2550

HAST-2 91.9 91.9 2384 69.9 70.1 1000 96.4 96.1 3693

SAM 92.0 92.0 146 71.9 71.9 61 94.2 93.8 226

XGB 93.6 93.6 15 79.1 73.1 6 90.0 87.1 23

ET-BERT 91.8 91.3 6663 70.9 70.9 2794 94.4 94.2 10,321

Hard vote 87.0 87.1 2384 72.0 73.1 1000 97.7 97.5 3693

Kotary et al. 93.1 93.1 1015 74.1 74.1 486 97.4 97.4 1423

Proposed 94.3 94.0 908 79.2 79.1 371 98.0 97.9 1374

* Inference time represents the total time (in milliseconds) taken to classify all data instances.

4.3. Analysis of Training History Based on the Application of Loss Functions

This section provides a comparative analysis based on loss function weights, with

comparison results for each dataset shown in Figures 9–11. In the results for the private

dataset, when only cross-entropy loss was used, only the initial HAST-1, SAM, and

2D-CNN participated in inference. When selection balance was added, the initial inter-

mediate classifiers were allocated data evenly, and this result persisted until the latter

part of training. Finally, when selection freeze was also applied, we can see that the

model selection results did not change significantly in the latter part of training, indicat-

ing stable learning. Similar differences can be observed for the other datasets. In conclu-

sion, the two proposed additional loss functions operate appropriately according to their

Figure 8. The number of sessions per application (ISCX Tor 2016).

4.2. Overall Comparisons with Other Methods

Overall, the proposed methodology leads to improved accuracy while ensuring rea-
sonable inference speed compared to the other methods. In the private dataset, there was a
1.8% p improvement in classification accuracy compared to HAST-1, which showed the
highest performance among baselines, and it demonstrated 1.8 times faster inference speed
in terms of inference time. Compared to XGB, which showed the best performance among

Sensors 2025, 25, 2853 11 of 17

the comparison models, the accuracy improved by 0.5% p, but XGB showed overwhelming
performance in terms of inference speed. However, in the ISCX Tor dataset, XGB showed
low performance, while the proposed methodology showed the best performance. The
traditional hard vote ensemble showed low performance except for ISCX Tor 2016, and the
ensemble of pre-trained models (Kotary, et al.) did not show superior performance on all
datasets. The proposed method showed the highest performance on all three evaluated
datasets and guaranteed a reasonable inference time compared to other methodologies
(Table 2).

Table 2. Overall comparison with other methods.

Model
Private ISCX VPN 2016 ISCX Tor 2016

Accuracy F1-Score Inference
Time * Accuracy F1-Score Inference

Time * Accuracy F1-Score Inference
Time *

2D-CNN 61.6 60.8 113 64.9 64.6 47 96.5 96.3 175
1D-CNN 59.5 58.3 113 66.1 65.8 47 96.6 96.3 175
HAST-1 92.5 92.5 1646 73.1 73.1 691 97.0 96.8 2550
HAST-2 91.9 91.9 2384 69.9 70.1 1000 96.4 96.1 3693

SAM 92.0 92.0 146 71.9 71.9 61 94.2 93.8 226

XGB 93.6 93.6 15 79.1 73.1 6 90.0 87.1 23
ET-BERT 91.8 91.3 6663 70.9 70.9 2794 94.4 94.2 10,321

Hard vote 87.0 87.1 2384 72.0 73.1 1000 97.7 97.5 3693
Kotary et al. 93.1 93.1 1015 74.1 74.1 486 97.4 97.4 1423

Proposed 94.3 94.0 908 79.2 79.1 371 98.0 97.9 1374

* Inference time represents the total time (in milliseconds) taken to classify all data instances.

4.3. Analysis of Training History Based on the Application of Loss Functions

This section provides a comparative analysis based on loss function weights, with
comparison results for each dataset shown in Figures 9–11. In the results for the private
dataset, when only cross-entropy loss was used, only the initial HAST-1, SAM, and 2D-
CNN participated in inference. When selection balance was added, the initial intermediate
classifiers were allocated data evenly, and this result persisted until the latter part of
training. Finally, when selection freeze was also applied, we can see that the model selection
results did not change significantly in the latter part of training, indicating stable learning.
Similar differences can be observed for the other datasets. In conclusion, the two proposed
additional loss functions operate appropriately according to their design intentions. SB
improves learning diversity by encouraging collaboration among all intermediate classifiers,
while SF enhances learning stability by limiting model selection changes in the latter part
of training.

Sensors 2025, 25, x FOR PEER REVIEW 12 of 18

design intentions. SB improves learning diversity by encouraging collaboration among

all intermediate classifiers, while SF enhances learning stability by limiting model selec-

tion changes in the latter part of training.

Figure 9. Training history based on the application of loss functions (private).

Figure 10. Training history based on the application of loss functions (ISCX VPN 2016).

Figure 11. Training history based on the application of loss functions (ISCX Tor 2016).

4.4. Comparative Analysis of Loss Function Weights

Figure 9. Training history based on the application of loss functions (private).

Sensors 2025, 25, 2853 12 of 17

Sensors 2025, 25, x FOR PEER REVIEW 12 of 18

design intentions. SB improves learning diversity by encouraging collaboration among

all intermediate classifiers, while SF enhances learning stability by limiting model selec-

tion changes in the latter part of training.

Figure 9. Training history based on the application of loss functions (private).

Figure 10. Training history based on the application of loss functions (ISCX VPN 2016).

Figure 11. Training history based on the application of loss functions (ISCX Tor 2016).

4.4. Comparative Analysis of Loss Function Weights

Figure 10. Training history based on the application of loss functions (ISCX VPN 2016).

Sensors 2025, 25, x FOR PEER REVIEW 12 of 18

design intentions. SB improves learning diversity by encouraging collaboration among

all intermediate classifiers, while SF enhances learning stability by limiting model selec-

tion changes in the latter part of training.

Figure 9. Training history based on the application of loss functions (private).

Figure 10. Training history based on the application of loss functions (ISCX VPN 2016).

Figure 11. Training history based on the application of loss functions (ISCX Tor 2016).

4.4. Comparative Analysis of Loss Function Weights

Figure 11. Training history based on the application of loss functions (ISCX Tor 2016).

4.4. Comparative Analysis of Loss Function Weights

This section provides a comparative analysis based on loss function weights, and the
comparison results are shown in Figure 12. After analyzing the results from all datasets
comprehensively, it is appropriate to set the selection balance loss to around 0.2 and the
selection freeze loss to about 0.2–0.4. Although there are differences between datasets,
cases where both the selection balance loss and selection freeze loss are applied within the
appropriate range demonstrate high performance.

Sensors 2025, 25, x FOR PEER REVIEW 13 of 18

This section provides a comparative analysis based on loss function weights, and the

comparison results are shown in Figure 12. After analyzing the results from all datasets

comprehensively, it is appropriate to set the selection balance loss to around 0.2 and the

selection freeze loss to about 0.2–0.4. Although there are differences between datasets,

cases where both the selection balance loss and selection freeze loss are applied within

the appropriate range demonstrate high performance.

(a) (b) (c)

Figure 12. Comparison of accuracy based on loss function weights: (a) private dataset; (b) ISCX

VPN 2016; (c) ISCX Tor 2016.

4.5. Analysis of Error Diversity

This section provides analysis results on error diversity, which is one of the condi-

tions for successful ensemble learning. Table 3 shows the classification results according

to the learning method of the base models. Pre-trained refers to the inference results on

the entire test dataset after training each model separately, while “Proposed” shows the

inference results on the entire test dataset after training using the proposed method.

Compared to Pre-trained, the proposed method shows increased learning accuracy for

2D-CNN and 1D-CNN, but decreased accuracy for the remaining models. Proposed (only

assigned dataset) represents the inference results only for the datasets assigned to each

model from the test dataset. 2D-CNN’s accuracy increased from 61.6% to 93.94%, and

1D-CNN showed 100% accuracy for its assigned dataset, while the accuracy of HAST-1,

SAM, and HAST-2 decreased. The proposed method increases the error diversity of each

model by appropriately dividing and allocating the test dataset to each model during the

end-to-end learning process. This can also be observed in Figure 13, which compares the

changes in model acceptance capacity.

Table 3. Classification results according to the learning method of the baselines.

 2D-CNN 1D-CNN HAST-1 HAST-2 SAM

Pre-trained 61.6 59.5 92.5 91.9 92

Proposed

(Entire test dataset)
67.1 65.9 91.5 91.5 91.3

Proposed

(Only assigned dataset)
93.94 100 99.3 77.3 93.2

Figure 12. Comparison of accuracy based on loss function weights: (a) private dataset; (b) ISCX VPN
2016; (c) ISCX Tor 2016.

Sensors 2025, 25, 2853 13 of 17

4.5. Analysis of Error Diversity

This section provides analysis results on error diversity, which is one of the conditions
for successful ensemble learning. Table 3 shows the classification results according to the
learning method of the base models. Pre-trained refers to the inference results on the entire
test dataset after training each model separately, while “Proposed” shows the inference
results on the entire test dataset after training using the proposed method. Compared to Pre-
trained, the proposed method shows increased learning accuracy for 2D-CNN and 1D-CNN,
but decreased accuracy for the remaining models. Proposed (only assigned dataset) represents
the inference results only for the datasets assigned to each model from the test dataset.
2D-CNN’s accuracy increased from 61.6% to 93.94%, and 1D-CNN showed 100% accuracy
for its assigned dataset, while the accuracy of HAST-1, SAM, and HAST-2 decreased. The
proposed method increases the error diversity of each model by appropriately dividing and
allocating the test dataset to each model during the end-to-end learning process. This can
also be observed in Figure 13, which compares the changes in model acceptance capacity.

Table 3. Classification results according to the learning method of the baselines.

2D-CNN 1D-CNN HAST-1 HAST-2 SAM

Pre-trained 61.6 59.5 92.5 91.9 92

Proposed
(Entire test dataset) 67.1 65.9 91.5 91.5 91.3

Proposed
(Only assigned dataset) 93.94 100 99.3 77.3 93.2Sensors 2025, 25, x FOR PEER REVIEW 14 of 18

Figure 13. Comparison of coverage by model.

Figure 13 shows the comparison results of model coverage for the first class (Nav-

erNow) of the private dataset. The top 5 models are the baselines used as intermediate

classifiers, and the results of the proposed method are located in the last row. Although

HAST-1 showed the highest accuracy among the base models, the proposed method as-

signed most of the dataset to SAM. Additionally, the proposed method was able to clas-

sify data that none of the existing models could classify. The proposed method enhances

error diversity by dividing and allocating the test dataset appropriately to each model

during the end-to-end learning process, which can also be observed in the comparison of

changes in model coverage shown in Figure 13.

4.6. Comparison of Homogeneous and Heterogeneous Model Ensembles

This section provides an analysis of whether accuracy improvements were achieved

when using only homogeneous models instead of five heterogeneous models. While the

proposed method combines five heterogeneous models, this section presents experi-

ments using ensembles of only homogeneous models for three lightweight model types

(2D-CNN, 1D-CNN, SAM), as shown in Table 4. For 2D-CNN and 1D-CNN, accuracy

improves as the number of models increases when combining homogeneous models.

However, for SAM, the accuracy decreases. These results confirm that the proposed

method follows the basic principle of ensemble learning, which improves performance

by combining weak classifiers with suboptimal performance. On the other hand, the

combination of three heterogeneous models showed higher accuracy compared to the

combination of homogeneous models, with the best results achieved when using all five

base models. This indicates that combining models with diverse input forms and struc-

tures helps improve generalization ability.

Table 4. Comparison of homogeneous and heterogeneous model ensembles.

#Models

Accuracy

Homogeneous Heterogeneous

2D-CNN 1D-CNN SAM

2D-CNN

1D-CNN

SAM

ALL

1 61.6 59.5 92.0

92.8 94.3
2 88.1 83.4 91.4

5 87.8 88.4 91.4

10 90.6 88.0 91.7

5. Discussion

The proposed deep learning-based ensemble learning method has a similar operat-

ing principle to bagging and, thus, can be considered to have similar improvement

effects. Bagging is one of the ensemble techniques that creates multiple random subsets

from the training data and trains them, aiming to make the predictions more stable and

Figure 13. Comparison of coverage by model.

Figure 13 shows the comparison results of model coverage for the first class (Nav-
erNow) of the private dataset. The top 5 models are the baselines used as intermediate
classifiers, and the results of the proposed method are located in the last row. Although
HAST-1 showed the highest accuracy among the base models, the proposed method as-
signed most of the dataset to SAM. Additionally, the proposed method was able to classify
data that none of the existing models could classify. The proposed method enhances error
diversity by dividing and allocating the test dataset appropriately to each model during
the end-to-end learning process, which can also be observed in the comparison of changes
in model coverage shown in Figure 13.

4.6. Comparison of Homogeneous and Heterogeneous Model Ensembles

This section provides an analysis of whether accuracy improvements were achieved
when using only homogeneous models instead of five heterogeneous models. While the
proposed method combines five heterogeneous models, this section presents experiments
using ensembles of only homogeneous models for three lightweight model types (2D-CNN,
1D-CNN, SAM), as shown in Table 4. For 2D-CNN and 1D-CNN, accuracy improves as
the number of models increases when combining homogeneous models. However, for
SAM, the accuracy decreases. These results confirm that the proposed method follows
the basic principle of ensemble learning, which improves performance by combining

Sensors 2025, 25, 2853 14 of 17

weak classifiers with suboptimal performance. On the other hand, the combination of
three heterogeneous models showed higher accuracy compared to the combination of
homogeneous models, with the best results achieved when using all five base models. This
indicates that combining models with diverse input forms and structures helps improve
generalization ability.

Table 4. Comparison of homogeneous and heterogeneous model ensembles.

#Models

Accuracy
Homogeneous Heterogeneous

2D-CNN 1D-CNN SAM
2D-CNN
1D-CNN

SAM
ALL

1 61.6 59.5 92.0

92.8 94.32 88.1 83.4 91.4
5 87.8 88.4 91.4

10 90.6 88.0 91.7

5. Discussion
The proposed deep learning-based ensemble learning method has a similar operating

principle to bagging and, thus, can be considered to have similar improvement effects.
Bagging is one of the ensemble techniques that creates multiple random subsets from the
training data and trains them, aiming to make the predictions more stable and consistent.
A brief comparison is shown in Figure 14. In the bagging example in Figure 14, the entire
dataset is divided into four subsets. The models corresponding to the subsets learn their
assigned subsets, and finally, the outputs of all models are aggregated through voting or
averaging. At this time, the subsets are not completely distinct, with some overlapping
data instances between subsets, which means that each model learns some information
from subsets that other models are learning, in addition to its assigned subset. This is
indicated by arrows on the right side of each model, with up arrows meaning high learning
rates and down arrows meaning low learning rates. The proposed method is similar to
bagging in that it divides the entire dataset into as many subsets as there are models. Also,
learning some information from subsets assigned to other models is similar, as it transmits
continuous loss values rather than discrete ones based on the output of the model selector
during backpropagation.

Sensors 2025, 25, x FOR PEER REVIEW 15 of 18

consistent. A brief comparison is shown in Figure 14. In the bagging example in Figure

14, the entire dataset is divided into four subsets. The models corresponding to the sub-

sets learn their assigned subsets, and finally, the outputs of all models are aggregated

through voting or averaging. At this time, the subsets are not completely distinct, with

some overlapping data instances between subsets, which means that each model learns

some information from subsets that other models are learning, in addition to its assigned

subset. This is indicated by arrows on the right side of each model, with up arrows

meaning high learning rates and down arrows meaning low learning rates. The proposed

method is similar to bagging in that it divides the entire dataset into as many subsets as

there are models. Also, learning some information from subsets assigned to other models

is similar, as it transmits continuous loss values rather than discrete ones based on the

output of the model selector during backpropagation.

Figure 14. The differences between the proposed method and bagging, from the perspective of

subset partitioning.

However, there are several differences from bagging, as shown in Table 5. First,

while overlap between subsets is explicitly allowed in bagging, in the proposed method,

the subsets are completely distinct during forward propagation, but they learn infor-

mation from other subsets during backpropagation. In terms of subset creation, bagging

randomly divides the subsets, while in the proposed method, the model selector per-

forms this role, which is determined by learning. For aggregation, bagging uses voting or

averaging, while in the proposed method, the model selector performs this role, which is

similar to the “winner takes all” strategy. Other differences include that the proposed

method does not perform out-of-bag validation, and the number of subsets and the

number of divisions per subset are flexible, as they are determined by learning. In terms

of feature selection, the proposed method does not automatically include features or

perform validation processes. Regarding inference time, bagging requires outputs from

all models, resulting in longer inference times, while the proposed method has balanced

inference times due to the characteristics of the “winner takes all” strategy.

Table 5. Comparison of the characteristics of bagging with the proposed method

Items Proposed Bagging

Overlap between subsets Implicit Explicit

Subset creation Model selector Random

Aggregation strategy
Winner takes all

Model selector
Vote, averaging

Out-of-bag strategy Absent Present

Number of subsets Variable Fixed

Number of divisions per subset Variable Fixed

Number of features Fixed Variable

Inference time Balanced Inefficient

Figure 14. The differences between the proposed method and bagging, from the perspective of
subset partitioning.

However, there are several differences from bagging, as shown in Table 5. First, while
overlap between subsets is explicitly allowed in bagging, in the proposed method, the
subsets are completely distinct during forward propagation, but they learn information
from other subsets during backpropagation. In terms of subset creation, bagging randomly
divides the subsets, while in the proposed method, the model selector performs this role,
which is determined by learning. For aggregation, bagging uses voting or averaging, while

Sensors 2025, 25, 2853 15 of 17

in the proposed method, the model selector performs this role, which is similar to the
“winner takes all” strategy. Other differences include that the proposed method does not
perform out-of-bag validation, and the number of subsets and the number of divisions per
subset are flexible, as they are determined by learning. In terms of feature selection, the
proposed method does not automatically include features or perform validation processes.
Regarding inference time, bagging requires outputs from all models, resulting in longer
inference times, while the proposed method has balanced inference times due to the
characteristics of the “winner takes all” strategy.

Table 5. Comparison of the characteristics of bagging with the proposed method.

Items Proposed Bagging

Overlap between subsets Implicit Explicit
Subset creation Model selector Random

Aggregation strategy Winner takes all
Model selector Vote, averaging

Out-of-bag strategy Absent Present
Number of subsets Variable Fixed

Number of divisions per subset Variable Fixed
Number of features Fixed Variable

Inference time Balanced Inefficient

In conclusion, the proposed method can be seen to improve generalization ability
through the process of subset division and learning, which is very similar to the mechanism
by which bagging improves generalization ability. When examined in detail, there are
many differences from bagging, and since bagging’s mechanism has clear advantages in
improving generalization ability, it is thought that if research is conducted to additionally
apply this to the proposed method, there is a possibility of further improving performance.

6. Conclusions
This study proposes a complete end-to-end deep ensemble method utilizing differen-

tiable model selection techniques. To the best of our knowledge, this is the first attempt at
a deep ensemble with model selection techniques applied. We have addressed the error
diversity issue and inference time problem inherent in ensembles using pre-trained models
through model selection techniques and end-to-end learning methods. The two additional
functions that we have proposed operate appropriately, as intended. The proposed method
enables faster and more accurate classification compared to existing approaches, achieving
an average improvement of 4.8%p in accuracy and a 7× enhancement in inference time
compared to transformer-based pre-trained models, a 4.9%p improvement in accuracy and
a 2.6× enhancement in inference time compared to traditional ensemble methods, and
a 2.3%p increase in accuracy and a 1.15× improvement in inference time compared to
existing model-selection-based ensembles. On the other hand, while the proposed method
is approximately 60 times slower in inference time on average compared to the XGB model,
it has clear advantages. These include being sufficiently capable of real-time processing,
demonstrating significant accuracy improvements on the ISCX Tor dataset, and offering
flexibility for extension through different backbone networks, parameters, and learning
strategies—unlike XGB. Although the proposed method has only been validated on three
application traffic classification datasets, it is a general method that is not limited to specific
fields and can be extended to other domains. There are three directions for future research:

1. Combining with the bagging mechanism, which is one of the existing ensemble
methods, as mentioned in the Discussion.

2. Improving the combination method to address cases where the proposed method,
despite its superior performance compared to existing methods, fails to classify some
data instances that were classified by existing models.

Sensors 2025, 25, 2853 16 of 17

3. Gaining a deeper understanding of the operating principles of the model selector and
extending it towards Explainable Artificial Intelligence (XAI).

Author Contributions: Conceptualization, U.-J.B. and M.-S.K.; methodology, U.-J.B.; software,
U.-J.B. and Y.-S.J.; validation, U.-J.B., Y.-S.J. and J.-S.K.; formal analysis, U.-J.B.; investigation, U.-J.B.
and J.-S.K.; resources, U.-J.B. and Y.-S.C.; data curation, U.-J.B. and Y.-S.C.; writing—original draft
preparation, U.-J.B.; writing—review and editing, U.-J.B.; visualization, U.-J.B. and J.-S.K.; supervision,
M.-S.K.; project administration, M.-S.K.; funding acquisition, M.-S.K. and Y.-S.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by Institute of Information & Communications Technology
Planning & Evaluation (IITP), funded by the Korean government (00235509, Development of security
monitoring technology based network behavior against encrypted cyber threats in ICT convergence
environment), and was supported by Institute of Information & communications Technology Plan-
ning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No. RS-2023-00230661,
Development of Standards for Hybrid Quantum Key Distribution Method and Network Manage-
ment Technology).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The source of the private dataset is security and cannot be disclosed.
ICSX VPN 2016 is available for download from https://www.unb.ca/cic/datasets/vpn.html (ac-
cessed on 16 February 2025), and ICSX Tor 2016 from https://www.unb.ca/cic/datasets/tor.html
(accessed on 16 February 2025).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Patel, S. 101+ Software Development Statistics You Should Know in 2025. MindInventory. Available online: https://www.

mindinventory.com/blog/software-development-statistics/ (accessed on 15 January 2025).
2. The Business Research Company. Low-Code Development Platform Market Report 2025—Low-Code Development Platform

Market Trends and Size. Available online: https://www.thebusinessresearchcompany.com/report/low-code-development-
platform-global-market-report (accessed on 15 January 2025).

3. Gitnux.org. Internet Traffic Statistics: A Look at Data Driving Online Behavior. Available online: https://gitnux.org/internet-
traffic-statistics/ (accessed on 15 January 2025).

4. The Cloudflare Blog. Cloudflare 2023 Year in Review. Available online: https://blog.cloudflare.com/radar-2023-year-in-review/
(accessed on 15 January 2025).

5. Wang, Z.; Zeng, Q.; Liu, Y.; Li, P. Malware traffic classification using convolutional neural network for representation learning. In
Proceedings of the 2017 International Conference on Information Networking (ICOIN), Da Nang, Vietnam, 11–13 January 2017;
pp. 712–717.

6. Wang, W.; Zhu, M.; Wang, J.; Zeng, X.; Yang, Z. End-to-end encrypted traffic classification with one-dimensional convolution
neural networks. In Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), Beijing,
China, 22–24 July 2017; pp. 43–48.

7. Yang, Y.; Kang, K.; Jiang, L.; Gao, Z.; Guo, Y.; Zhang, J.; Deng, J. HAST-IDS: Learning Hierarchical Spatial-Temporal Features
Using Deep Neural Networks to Improve Intrusion Detection. IEEE Access 2017, 5, 26954–26964.

8. Liu, C.; Liu, L.; Wang, W.; Wang, G.; Zhang, H. Self-attentive deep learning method for online traffic classification and its
interpretability. Comput. Netw. 2021, 197, 108285.

9. Lin, X.; Xiong, G.; Gou, G.; Li, Z.; Shi, J.; Yu, J. ET-BERT: A Contextualized Datagram Representation with Pre-training
Transformers for Encrypted Traffic Classification. In Proceedings of the ACM Web Conference 2022 (WWW ’22), Lyon, France,
25–29 April 2022; pp. 633–642.

10. Zhang, S.; Fu, D.; Liang, W.; Zhang, Z.; Yu, B.; Cai, P.; Yao, B. TrafficGPT: Viewing, processing and interacting with traffic
foundation models. Transp. Policy 2024, 150, 95–105. [CrossRef]

11. Wang, Q.; Qian, C.; Li, X.; Yao, Z.; Zhou, G.; Shao, H. Lens: A Foundation Model for Network Traffic. arXiv 2024, arXiv:2402.03646.
12. Aceto, G.; Ciuonzo, D.; Montieri, A.; Persico, V.; Pescapé, A. AI-Powered Internet Traffic Classification: Past, Present, and Future.

IEEE Commun. Mag. 2024, 62, 168–175. [CrossRef]

https://www.unb.ca/cic/datasets/vpn.html
https://www.unb.ca/cic/datasets/tor.html
https://www.mindinventory.com/blog/software-development-statistics/
https://www.mindinventory.com/blog/software-development-statistics/
https://www.thebusinessresearchcompany.com/report/low-code-development-platform-global-market-report
https://www.thebusinessresearchcompany.com/report/low-code-development-platform-global-market-report
https://gitnux.org/internet-traffic-statistics/
https://gitnux.org/internet-traffic-statistics/
https://blog.cloudflare.com/radar-2023-year-in-review/
https://doi.org/10.1016/j.tranpol.2024.03.006
https://doi.org/10.1109/MCOM.001.2300361

Sensors 2025, 25, 2853 17 of 17

13. Ying, X. An Overview of Overfitting and its Solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. [CrossRef]
14. Mienye, I.D.; Sun, Y. A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects. IEEE Access 2022, 10,

99129–99149. [CrossRef]
15. Zhang, X.; Liu, S.; Wang, X.; Li, Y. A fragmented neural network ensemble method and its application to image classification. Sci.

Rep. 2024, 14, 2291. [CrossRef] [PubMed]
16. Valenti, S.; Rossi, D.; Dainotti, A.; Pescapè, A.; Finamore, A.; Mellia, M. Reviewing Traffic Classification. In Data Traffic Monitoring

and Analysis; Springer: Berlin/Heidelberg, Germany, 2013.
17. Wang, T.; Xie, X.; Wang, W.; Wang, C.; Zhao, Y.; Cui, Y. NetMamba: Efficient Network Traffic Classification via Pre-training

Unidirectional Mamba. arXiv 2024, arXiv:2405.11449.
18. Gabilondo, Á.; Fernández, Z.; Viola, R.; Martín, Á.; Zorrilla, M.; Angueira, P.; Montalbán, J. Traffic Classification for Network

Slicing in Mobile Networks. Electronics 2022, 11, 1097. [CrossRef]
19. Akbar, M.S.; Hussain, Z.; Ikram, M.; Sheng, Q.Z.; Mukhopadhyay, S.C. On challenges of sixth-generation (6G) wireless networks:

A comprehensive survey of requirements, applications, and security issues. J. Netw. Comput. Appl. 2025, 233, 104040. [CrossRef]
20. Possebon, I.P.; Silva, A.S.; Granville, L.Z.; Schaeffer-Filho, A.; Marnerides, A. Improved Network Traffic Classification Using

Ensemble Learning. In Proceedings of the 2019 IEEE Symposium on Computers and Communications (ISCC), Barcelona, Spain,
29 June–3 July 2019; pp. 1–6.

21. Shahraki, A.; Abbasi, M.; Taherkordi, A.; Kaosar, M. Internet Traffic Classification Using an Ensemble of Deep Convolutional
Neural Networks. In Proceedings of the 4th FlexNets Workshop on Flexible Networks Artificial Intelligence Supported Network
Flexibility and Agility (FlexNets ’21), Virtual Event, 23 August 2021; pp. 38–43.

22. Aouedi, O.; Piamrat, K.; Parrein, B. Ensemble-Based Deep Learning Model for Network Traffic Classification. IEEE Trans. Netw.
Serv. Manag. 2022, 19, 4124–4135. [CrossRef]

23. Jang, E.; Gu, S.; Poole, B. Categorical Reparameterization with Gumbel-Softmax. arXiv 2017, arXiv:1611.01144.
24. Maddison, C.J.; Mnih, A.; Teh, Y.W. The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables. arXiv

2017, arXiv:1611.00712.
25. Donà, J.; Gallinari, P. Differentiable Feature Selection, A Reparameterization Approach. In Machine Learning and Knowledge

Discovery in Databases. Research Track; Springer: Cham, Switzerland, 2021; pp. 414–429.
26. Strypsteen, T.; Bertrand, A. Conditional Gumbel-Softmax for constrained feature selection with application to node selection in

wireless sensor networks. arXiv 2024, arXiv:2406.01162.
27. Kim, S.; Kim, I.; Lim, S.; Baek, W.; Kim, C.; Cho, H.; Yoon, B.; Kim, T. Scalable Neural Architecture Search for 3D Medical Image

Segmentation. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2019; Springer: Cham, Switzerland, 2019;
pp. 220–228.

28. Kotary, J.; Vito, V.D.; Fioretto, F. Differentiable Model Selection for Ensemble Learning. arXiv 2023, arXiv:2211.00251.
29. Draper-Gil, G.; Lashkari, A.H.; Mamun, M.S.I.; Ghorbani, A.A. Characterization of Encrypted and VPN Traffic Using Time-Related

Features. In Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP 2016), Rome,
Italy, 19–21 February 2016; pp. 407–414.

30. Lashkari, A.H.; Draper-Gil, G.; Mamun, M.S.I.; Ghorbani, A.A. Characterization of Tor Traffic using Time based Features. In
Proceedings of the 3rd International Conference on Information Systems Security and Privacy (ICISSP 2017), Porto, Portugal,
19–21 February 2017; pp. 253–262.

31. Baek, U.-J.; Lee, M.-S.; Park, J.-T.; Choi, J.-W.; Shin, C.-Y.; Kim, M.-S. Preprocessing and Analysis of an Open Dataset in Application
Traffic Classification. In Proceedings of the 2023 24st Asia-Pacific Network Operations and Management Symposium (APNOMS),
Jeju Island, Republic of Korea, 13–15 September 2023; pp. 227–230.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1109/ACCESS.2022.3207287
https://doi.org/10.1038/s41598-024-52945-0
https://www.ncbi.nlm.nih.gov/pubmed/38280964
https://doi.org/10.3390/electronics11071097
https://doi.org/10.1016/j.jnca.2024.104040
https://doi.org/10.1109/TNSM.2022.3193748

	Introduction
	Related Works
	Deep Learning-Based Application Traffic Classification
	Application Traffic Classification Using Ensemble Techniques
	Straight-Through Gumbel-Softmax
	Model Selection Mechanism

	Deep Ensemble Using the Model Selection Technique
	Overview of the Deep Ensemble Process
	Baselines for Intermediate Classifiers
	Loss Functions for Improving Error Diversity and Learning Stability

	Experiments and Evaluation
	Datasets
	Overall Comparisons with Other Methods
	Analysis of Training History Based on the Application of Loss Functions
	Comparative Analysis of Loss Function Weights
	Analysis of Error Diversity
	Comparison of Homogeneous and Heterogeneous Model Ensembles

	Discussion
	Conclusions
	References

